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Self-organized criticality and dislocation damping 
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Abstract 

Mechanical 1/f noise in metallic samples is derived by modelling the relaxation dynamics of dislocation networks 
as a self-organized critical process. Our predictions compare fairly closely with earlier measurements obtained 
under diverse experimental conditions. 

1. Introduction 

Glissile dislocations provide a fairly efficient mech- 
anism of mechanical energy dissipation in crystalline 
solids subject to periodic strains [1-3]. In real crystals, 
dislocations break up to form a network of dislocation 
loops with a" characteristic length LN, which depends 
on the material and the preparation of each sample. 
It is usually assumed that the loops are tightly pinned 
at the network nodes [4]. Defects, such as impurities, 
vacancies and interstitials, act as a cloud of weaker, 
mobile pinning points surrounding the network loops 
with a characteristic zero-temperature binding energy 
Ec (the Cottrell energy) and an average pin-to-pin 
distance [3] Lp on the line (with Lp <<LN). Under stress, 
the network loops bow out, similarly to an elastic string, 
being held back at the pinning points. The effective 
tension of the loop segments connecting two adjacent 
pins provides the restoring force in the vibrating string 
model developed by Granato and LOcke [1] (GL model). 
If the applied stress tr is large enough, i.e. 

tr > trB = E c / b 2 L p  

where b is the modulus of the relevant Burgers vector, 
the force exerted by the loop segments at the pinning 
points can overcome the Cottrell binding force and the 
so-called depinning (or breakaway) process sets in. 

Thus, the dislocation loss is made up of two different 
contributions. (1) The first type is due to the frictional 
force acting upon each vibrating loop segment as a 
result of its interaction with the lattice environment 
[5], and the corresponding dynamic loss is frequency 
dependent, since the underlying dissipative mechanism 
is a resonant one. (2) The second type of loss is due 
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to the hysteretic nature of the pinning-depinning mech- 
anism involving loop segments being subject to strong 
oscillating stresses. For a given stress amplitude, the 
resulting breakaway loss at zero temperature is expected 
to be frequency independent. 

The distinction between resonant and breakaway loss 
has to be considered with some caution for at least 
two reasons. First, for vanishingly small values of the 
strain angular frequency to, the decrement function of 
a crystalline sample (A(to)) tends apparently to a positive 
constant [6-8]. Recent measurements [7, 8] have seemed 
to confirm earlier observations reported by Mason [6], 
although doubts still remain [9]. In the dynamic loss 
regime tr< trB, A(0) turns out to be independent of tr 
as well. Such a residual internal friction could not be 
explained in terms of the GL model. Secondly, in the 
limit of long forcing cycles, the finite relaxation times 
of the impurity diffusive dynamics start playing a role 
[3]; in particular, the pinning--depinning mechanism is 
thermally activated and the breakaway process is not 
a clear-cut threshold phenomenon [1]. A strong fre- 
quency dependence of the relevant decrement function 
may ensue at a finite temperature [1, 10]. 

In a recent paper [11], it was proposed that the 
relaxation dynamics of a dislocation network interacting 
with a random impurity pattern can be described as 
an example of the so-called self-organized criticality 
(SOC) [12-15]. The basic idea can be sketched as 
follows. The energy released by depinning of one loop 
segment propagates along the networks loops and may 
trigger the depinning of further neighbouring segments, 
in principle, with no restriction on the number of 
depinning events, other than the finite size of the 
sample. Such an "unzipping" mechanism was observed 
in earlier numerical simulations [16]. A depinned loop 
segment sweeps through its slip plane until it becomes 
pinned again by a lattice defect, such as an impurity, 
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with sufficiently high binding energy (kinetic energy 
excess is eventually thermalized). As a result, the entire 
loop is pinned down into a new configuration. Such a 
configuration is termed critically stable, because in- 
creasing or by a small amount makes it unstable and 
a new unzipping mechanism ensues. Furthermore, the 
time sequence of such a stick-and-slip mechanism is 
expected to exhibit no intrinsic time-scale. By intro- 
ducing the notion of a critically stable configuration, 
we assume implicitly that, under certain circumstances 
[7, 8], the linear response theory (dynamic loss) and 
the hysteresis dynamics (breakaway loss) may be in- 
adequate to describe a system as complex as a dislocation 
network. 

In the present article, we elaborate on the possibility 
of implementing the SOC notion into the vibrating 
string model for the dislocation dynamics in crystalline 
solids with low impurity densities. 

2. A toy model 

Let us introduce dislocation SOC modelling by dis- 
cussing the simple case of a d-dimensional lattice of 
pinning points. Without entering into the details of the 
dislocation network dynamics, we can assume that a 
local stress a(r, t) is loaded on the pin at r. The external 
stress is increased adiabatically (i.e. with a low forcing 
frequency) by adding a fixed quantity &r randomly on 
the lattice nodes. There is a microscopic limit cr, h on 
the allowed stress on any node. If at a given time the 
stress on the node r is a(r, t )>  or, h, then a depinning 
event occurs: the full amount of stress o(r, t) is trans- 
ferred in equal parts to d of its 2d nearest neighbours 
in the direction of the applied stress. Thus, the stress 
a(r, t) is reset to zero, whereas the transferred stress 
adds to the stress previously stored on the neighbours. 
If the total stress on these nodes attains the threshold 
value ~,h, further depinning events, i.e. stress releases, 
follow. The sequence of activation events come to an 
end at a time t +  r, when a new pinning configuration 
is reached, i.e. a(r, t + r) < Crth at any r. A single stress 
increase ~cr may trigger off the depinning of a cluster 
ofs  connected nodes. This is the unzipping phenomenon 
observed numerically [16]. This model of dislocation 
dynamics, valid for materials with high defect densities 
[11], is certainly oversimplified. Nevertheless, it has the 
merit of introducing the SOC rationale: in contrast to 
the GL model, no matter how improved, we have here 
that stationarity implies criticality. 

The comparison of SOC with the theory of critical 
phenomena has been elucidated in ref. 15. The role 
of reduced temperature is played by the deviation ~rt h - or, 
where or, h is a critical stress. The correlation length 
is the cut-off in the linear cluster size for ~r< crth. For 

the sake of generality, the linear size l of a subcritical 
cluster is related to its size s by the ffactal dimension 
D, such that s=l  °. The cluster size distribution D(s) 
is thus characterized by the two power laws. 

D(s) =s  (1) 

where ~ is the critical exponent of the correlation 
length. Analogously, the lifetimes of the unzipping 
events (r) are distributed according to the power law 
D(r) = z -~ and are related to the cluster linear size by 
the dispersion relationship r = l  z. 

Some of the critical exponents introduced above have 
been determined analytically for isotropic and con- 
servative SOC models such as the present one [14], 
i.e. 

2 1 
K = 3 -  ~ z =  5 ( d + 2 )  (3) 

and b = ( K +  1)D/z-2 .  
We will now calculate the residual decrement function 

A(0) under the assumptions of the present SOC model. 
Since glissile dislocations are likely to move in a slip 
plane, we confine ourselves to the bidimensional case. 
Our predictions for A(0) with d- -2  turn out to depend 
on the critical exponents K and z only and, tfierefore 
are quite insensitive to the details of the (conservative 
and isotropic) model adopted here. Following the ar- 
gument expounded in ref. 11, the lifetime distribution 
f(r) of the unzipping events in a crystalline sample 
subjected to both a static stress or with o,< ~r,h and a 
small periodic stress ~(t) with amplitude % << or is 

1 dr  
f(r)  d r =  ln(r=/ro) r (4) 

The lifetimes To and ~-= set the applicability range of 
the SOC model. In practice, one tries to estimate the 
corresponding size range [So, s=] through the relation- 
ship r=s ~/°, which clearly depends on the nature of 
the sample under study. 

To make explicit connections with the vibrating string 
model, the sample decrement function A(to) can be 
calculated by averaging the single loop segment dec- 
rement function A(to, z) with respect to the lifetime 
distribution in eqn. (4). According to GL calculations 
[1], for an overdamped vibrating string of characteristic 
length Lp, we have 

tOT 
A(tO, r) = AoaALp 2 1 +  (tOry (5) 

where A is the total length of dislocation line per unit 
volume, 12 is an orientation ratio and Ao depends mostly 
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on the dislocation parameters (i.e. the modulus b of 
the relevant Burgers vector and the effective tension 
per unit of length C). Therefore, our estimate for A(~o), 
i.e. 

A(o~) = fA(oJ, rlf(r)  dr 
, to 

Ao~AL~ ~ 
- {tan- I(w¢~ ) - tan- 1(W¢o)} (6) 

ln(r=/~o) 

gives results quite insensitive to the forcing angular 
frequency o~ over the whole frequency domain O~Zo << 1 
and co~-= >> 1. 

For more details about the derivation of eqns. (4)-(6), 
the reader is referred to the original work [11]. Here, 
we limit ourselves to note that eqn. (4) holds well only 
for the bidimensional case, and that the one free 
parameter of the present model, i.e. the threshold stress 
ath, can be determined, at least in principle, experi- 
mentally. 

3. S O C  m o d e l s  o f  d i s locat ion  k i n k  d i f fus ion  

The toy model outlined in Section 2 allowed us to 
interpret satisfactorily some experimental results on 
low frequency damping in C u B e  alloys [8]. However, 
it did not allow us to reproduce the frequency de- 
pendence of A(o~) for samples of low impurity density 
[2, 6]. The reason is that, for samples with low impurity 
densities, the SOC mechanism introduced to describe 
the dislocation-impurity interactions applies only to a 
small fraction of the dislocation network loops, as shown 
in the following. 

Glissile dislocations are sensitive to the discreteness 
of the lattice structure. When diffusing in their slip 
plane, dislocation loops must overcome a periodic struc- 
ture of Peierls valleys with spacing a (each equivalent 
to an applied stress ap), either by thermal nucleation 
or (forced) Brownian movement [3, 5]. A dislocation 
line thrown across Np+ 1 Peierls valleys exhibits Np 
geometric kinks or antikinks. An applied stress ~r pulls 
the kinks to the left and the antikinks to the right, so 
that the dislocation line slips in the direction of the 
stress itself. A kink passes through an antikink but 
bounces off another kink, and vice versa, the relevant 
interaction potentials being short ranged. Typically, the 
repulsive kink-kink potential UK(r) decays as CaZ/2r 
for relative distances r of the order of the kink size 
or shorter. 

If a dislocation segment is pinned between two points 
separated by Np Peierls valleys, the Ate geometric kinks 
(antikinks) repel each other until they reach a uniform 
distribution with spacing ro=L/Np. The orientation of 

the dislocation line with respect to the Peierls valleys 
is given by the angle 4,, where sin 4' = a/ro. Furthermore, 
the kink-kink repulsion sets an upper limit to the 
number of kinks that may be accommodated on a 
dislocation segment of length L [3]: 

NP < / ( ~ - ~ )  1/3 L a - 

Seeger and Schiller [5] worked out the kink model 
outlined here to calculate the relevant decrement func- 
tion A(o~) for a dislocation segment subject to periodic 
forcing. Their results came very close to the predictions 
of the vibrating string model. In fact, the observed 
decrement function at zero frequency A(0) cannot be 
accounted for by the kink model either. 

A further complication arises when one tries to include 
the lattice substrate interactions. This amounts to in- 
troducing a periodic structure of shallow potential valleys 
(Schottky valleys) intersecting the Peierls valleys with 
a different spacing a'. Without loss of generality, let 
us assume here that the two valley families are or- 
thogonal. A Schottky valley is characterized by an 
effective escape stress (~rs) which is much smaller than 
the Peierls stress ~rp. The minimum number Ns of 
Schottky valleys that a pinned dislocation segment of 
length L bearing Np kinks (antikinks) must cross is 
given by the inequality Ns >t N p -  AN. In fact, when Ns 
is decreased smaller than Np, a certain number AN of 
kinks are pushed towards the top of the Schottky 
barriers; as a result, an internal stress is exerted on 
the pins at the end-point of the dislocation segment. 
On comparing such an internal stress with the breakaway 
stress, one concludes that the pinning condition requires 

AN acrB 
- -  < - -  ( 7 )  
Np - a ' a s  

Correspondingly, the maximum value of the angle 4' 
prior to depinning is 

a 1 
tan 4' = a' 1 -  AN/Np (8) 

A simple geometric argument [17] leads us to conclude 
that the fraction of the total dislocation line that can 
be envisaged as being close to a SOC configuration is 

2or B 
/3 = - - -  (9) 

~rcr s 

Here, we have assumed for simplicity that a/a' =O(1) 
and neglected the kink-kink interactions. When these 
interactions are included, eqn. (9) becomes modified 
[17]. The relevant dislocation segments are all oriented 
according to a critical angle ]4'[=tan-l(a/a ') ---¢r/4. 

The fraction of network loops close to the critical 
angle can be represented as a one-dimensional chain, 
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where a gas of short-range interacting quasi-particles, 
i.e. the kinks (or antikinks), are flee to move along a 
periodic, shallow multiwell potential until they hit a 
pinning point (e.g. an impurity) with a higher binding 
energy. The pinning points are distributed randomly 
along the chain. Impurity barriers may be overcome 
by the combined action of an external drive (an applied 
stress) and the repulsive forces acting, say, between 
nearest neighbour kinks (antikinks). For a given density 
of pinning points and kinks, the system exhibits two 
regimes: (1) when the external force is sufficiently large, 
the kinks move freely (free flow or "slip" regime, 
corresponding to cr> as); (2) for low values of the 
external stress, the spatial distribution of kinks and 
impurities does not change ("stick" regime). However, 
even a very small increase in the driving force may 
produce local avalanches of depinned kinks which travel 
a distance s before becoming pinned again. Such a 
critical chain exhibits the typical SOC properties out- 
lined in Section 2, as shown by digital simulation [17]. 

A simple SOC model for our kink chain can be 
obtained as a trivial extension of the pinned flux lattice 
model of ref. 18. For a more detailed modelling of a 
critical kink chain, the reader is referred to ref. 17. 
However, for the sake of brevity, let us elaborate on 
the simulation results of ref. 18. For a wide range of 
parameter values, the kink displacement distribution 
D ( s )  in the "stick" regime is as in eqn. (1) with 
K= 2.3 + 0.2. We can then ask ourselves what the prob- 
ability is that a network loop segment of length L is 
left behind following an avalanche event. On taking 
into account that the number of geometric kinks (an- 
tikinks) is conserved, one concludes that the corre- 
sponding length distribution obeys the power law [17] 

2 (2L/-2(~-a)  
Nsoc(L) = (2K- 3) ~ \ ~ p ]  (10) 

in the range [Lp/2, oo ]. It should be remembered that 
the length distribution of the remaining fraction 1 - /3  
of thermalized loop segments [1, 3] may be approximated 
to 

NGL(L) = ~pp 

It follows that, when we take in the GL model the 
average of the one-segment decrement function a(w, ~-) 
in the dynamic loss regime over the segment length L, 
the appropriate L distribution function is 
f l N s o c ( L )  + (1 -/3)NoL(L), such that 

A(w) =/3Asoc(W) + (1 -/3)AGL(O~) (12) 

For K=2.5, we have 

Asoc(tO) = Ao.QALp2 4 {2  + tan-  I (T)  } (13) 

whereas ACL(tO) is the usual Debye curve plotted in 
ref. i. The quantity 3' in eqn. (13) denotes the viscous 
damping constant per unit of dislocation length of the 
GL model. 

4. Conclusions 

The comparison between the theoretical predictions 
in eqns. (12) and (13) and the relevant experimental 
data [6] proves rather satisfactory [17]. The separation 
between critical and thermal dislocation loops in eqn. 
(12) seems to provide a sound interpretation of the 
residual dislocation friction, independent of the exact 
value of the critical exponent K. Thus, more realistic 
SOC models for a critical dislocation kink chain can 
be envisaged with as good predictive capabilities as 
those of the simplified model of ref. 18. 
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